Alkali distribution in borosilicate glasses

T. Nanba¹ & Y. Miura

Department of Environmental Chemistry and Materials, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

The alkali distribution in borosilicate glass has been discussed on the basis of the different quantities obtained by various experimental methods. The NBO fraction was chosen as a common quantity for evaluating the alkali distribution models. The NBO fractions in sodium borosilicate glasses were estimated from ¹¹B and ²⁹Si NMR as well as XPS. However, the best model was not found among the existing models. The amounts of sodium oxide consumed for the NBO formation in borate and silicate networks and for the formation of BO₄ units were separately estimated from the ¹¹B and ²⁹Si NMR data. A new trend was found in the alkali distribution suggesting the possibility for a new universal distribution model.

Borosilicate glass consists of borate and silicate networks formed by BO₃ and SiO₄ units, and the addition of network modifiers such as alkali and alkaline earth oxides to the glass leads to complicated structural changes. When alkali ions are associated with a silicate network, nonbridging oxygens (NBOs) are formed in the network. When associated with a borate network, fourfold coordinated borons (B4) and NBOs are produced in the borate network. Hence, the amount of the structural species present in the glass is dependent on the amount of the alkali ions associated with silicate and borate networks. Several alkali distribution models have been proposed for alkali borosilicate glasses, in which the glass composition has been commonly represented as $RR_2OB_2O_3$. KSiO₂, where R and K denote the molar ratios, $R=R_2O/B_2O_3$ and $K=SiO_2/B_2O_3$. Dell *et al*⁽¹⁾ described the fraction of borons having various coordination structures determined from ¹¹B NMR, in which they assumed macroscopic structural units such as reedmergnerite and diborate groups in the glasses. Zhong *et al*⁽²⁾ also de-</sup> scribed the boron fractions given from ¹¹B NMR and their assumption is, however, quite different from that of Dell *et al.*⁽¹⁾ It was assumed in the Zhong model⁽²⁾ that alkali ions were distributed only within a borate network below the critical R_2O content, R_0 and for $R > R_0$. However, alkali ions were proportionally distributed within the borate 1/(1+K) and silicate K/(1+K)networks. The optimum R_0 value was determined in

every K-family of glasses. Martin et $al^{(3-5)}$ performed ²⁹Si MAS-NMR measurements, the chemical shift being described on the basis of the Zhong model. However, the optimum R_0 values derived from ²⁹Si and ¹¹B NMR were different from one another.⁽³⁾ Recently Miura et al⁶ proposed a new alkali distribution model on the basis of XPS and an appropriate acid-base concept. They also introduced a critical R_2O content, R_c , assuming the alkali distribution that for $R < R_c$ alkali oxides distributed within the borate network were consumed only in the formation of tetrahedral BO₄ units. and NBOs associated with borate network were produced only after exceeding $R_{\rm c}$. In the Miura model, furthermore, alkali ions are differently distributed between borate and silicate networks, where the alkali distribution coefficient, α is introduced to represent the R₂O content associated with borate and silicate networks. The amount of R₂O associated with silicate network, $R_{\rm Si}$, is given by

$$R_{\rm Si} = \begin{cases} \alpha R \text{ for } R \le R_{\rm c} \\ (R - R_{\rm c}) K / (1 + K) + \alpha R_{\rm c} \text{ for } R_{\rm c} \le R \end{cases}$$
(1)

The coefficient α was optimised to reproduce the NBO fraction evaluated from XPS measurements. The α value so-determined seemed to be in good agreement with the relative amount of Si–O–Si bonds in a B₂O₃.*K*SiO₂ glass, suggesting that alkali oxides added to the glass were preferentially consumed in breaking Si–O–Si bonds. In the case α =0, Equation (1) is identical to the Zhong model. The physical meaning of R_c is, however, quite different between the Zhong and Miura models, that is, R_c is the critical R₂O content for the formation of NBO in silicate network in the Zhong model and for the NBO formation in borate network in the Miura model.

These alkali distribution models are evaluated on the basis of different experiments and physical quantities, that is, the Dell and Zhong models are commonly based on the fractions of borons with various coordination structures estimated from ¹¹B NMR, the Martin model is derived from the chemical shift in ²⁹Si MAS-NMR and the Miura model is derived for the NBO fraction determined with XPS. If a common quantity is chosen, it will be possible to compare the models without prejudice. In the present study, the amount of NBO was chosen as a common quantity to review the alkali distribution models.

¹ Author to whom correspondence should be addressed. (email: tokuro_n@cc.okayama-u.ac.jp}

²⁴⁴ Physics and Chemistry of Glasses Vol. 44 No. 3 Junel 2003

Figure 1(a-c). Fraction of NBO in $RNa_2O.B_2O_3.KSiO_2$ glasses determined from the experiments (XPS,⁽⁸⁾) ¹¹BNMR^(1,7) and ²⁹Si MAS-NMR⁽⁸⁾) and the models (Miura,⁽⁶⁾ Dell⁽¹⁾ and Martin⁽⁴⁾). (Si+B) represents the fraction of total NBO in the glass and (Si) indicates the fraction of NBO only in the silicate network: (a) K = 2.0; (b) K = 4.0; (c) K = 6.0

Evaluation of NBO fraction

In borosilicate glasses, alkali oxides are consumed to produce B4 and NBO. If we assume that BO₄ tetrahedra have no NBO, NBO should be included in either BO₃ triangles or SiO₄ tetrahedra. If such is the case, we can evaluate the amount of NBO from the fraction of fourfold coordinated borons, N_4 , according to the following procedures.

1. 1 mole of R_2O forms 2 moles of BO_4 unit

 $2BO_{3/2}+R_2O\rightarrow 2BO_{4/2}$

Then, when R_{B4} moles of R_2O are consumed to form BO_4 units, $2R_{B4}$ moles of B4 will be produced. An $RR_2O.B_2O_3.KSiO_2$ glass contains 2 moles of B, and N_4 will hence be given by

$$N_4 = 2R_{\rm B4}/2 = R_{\rm B4} \tag{2}$$

2. 1 mole of R_2O forms 2 moles of NBO.

 $(Si-O-Si)+R_2O\rightarrow 2(Si-O\cdots R)$

 $(B-O-B) + R_2O \rightarrow 2(B-O\cdots R)$

Then, when R_{Si} and R_{B3} moles of R_2O are consumed to produce NBO in the silicate and borate networks, respectively, $2R_{Si}$ and $2R_{B3}$ moles of NBO will be produced.

3. Let us assume that $R_{\rm B}$ moles of R_2O are associated with the borate network. $R_{\rm B4}$ and $R_{\rm B3}$ moles of R_2O are consumed to produce BO₄ and NBO, respectively. Here, $R_{\rm B}=R_{\rm B3}+R_{\rm B4}$ and $N_4=R_{\rm B4}$ from Equation (2) so that we can obtain $R_{\rm B3}=R_{\rm B}-N_4$. Consequently, $2R_{\rm Si}$ and $2R_{\rm B3}=2(R_{\rm B}-N_4)$ moles of NBOs will be produced, and the total amount of NBO in the glass will be $2R_{\rm Si}+2(R_{\rm B}-N_4)=2R-2N_4$, where $R=R_{\rm Si}+R_{\rm B}$.

4. Thus, the total amount of NBO formed in the glass is independent of alkali distribution and it depends only on N_4 , that is, the fraction of fourfold borons. Finally, the NBO fraction in the glass, f(NBO) is given by

$$f(\text{NBO}) = (2R - 2N_4)/(R + 3 + 2K) \tag{3}$$

According to the equation, we can estimate the NBO fraction both from experiments and models.

In XPS analysis, the NBO fraction can be obtained directly from the separation of O1s signal into BO and NBO components, and the further separation such as NBO in borate and silicate networks, however, would

Physics and Chemistry of Glasses Vol. 44 No. 3 June 2003

not be useful.⁽⁶⁾ We can experimentally obtain the N_4 value from boron NMR, but the alkali distribution, $R_{\rm B}$, cannot be determined from boron NMR experiments. Assuming that $R_{\rm B3}/R_{\rm B}$ is proportional to $R_{\rm B}$, Zhong *et al*⁽²⁾ evaluated $R_{\rm B}$ from ¹¹B NMR, but the assumption is not valid. Silicon NMR is probably the only method that can experimentally determine the alkali distribution, $R_{\rm Si}$. The amount of NBO in the silicate network can be estimated from the Q_n distribution obtained from silicon NMR as for the NBO fraction in borate network. Full information on the alkali distribution will be provided with the combination of B and Si NMR experiments.

In the present paper, the experimental data for $RNa_2O.B_2O_3.KSiO_2$ glasses were collected from the literature, XPS reported by Miura *et al*,⁽⁶⁾ ¹¹B NMR by Dell *et al*⁽¹⁾ and Yun & Bray⁽⁷⁾ and ²⁹Si-MAS NMR by Bhasin *et al*,⁽⁸⁾ evaluating the NBO fraction.

NBO fractions evaluated from experiments and models

The NBO fractions evaluated from the various methods are summarised in Figure 1 for the glasses, $RNa_2O.B_2O_3.KSiO_2$ (K=2.0, 4.0 and 6.0), in which the NBO fractions evaluated from the experimental data are indicated by the markers and those from the models are shown by the lines. As mentioned above, the amount of NBO estimated from XPS or boron NMR should be the total amount of NBO in a glass. In these experiments NBOs in BO₃ and SiO₄ units are indistinguishable. On the other hand, we can evaluate the amount of NBO only in SiO₄ units from the Q_n distribution obtained by silicon NMR. As also described above, R moles of Na₂O are divided into $R_{\rm Si}$ and $R_{\rm B}$ moles, being distributed within the silicate and borate networks, respectively. Therefore, the fraction of NBO in SiO₄ units must not exceed the total NBO fraction. In Figure 1 some points obtained from silicon NMR exceed the points from XPS and boron NMR. Apart from that, the difference in the NBO fraction between the experiments is quite small, since NBO in SiO₄ units is the predominant species in these higher *K*-family glasses. If the Q_n distribution in the smaller *K*-family glasses such as K=0.5 were available, the difference from silicon NMR would be more obvious.

In the alkali distribution models proposed by Dell *et al*⁽¹⁾, Zhong *et al*⁽²⁾ and Miura *et al*⁽⁶⁾ the amounts

Figure 2(a–c). Fraction of fourfold coordinated boron, N_4 in $RNa_2O.B_2O_3$. $KSiO_2$ glasses determined from the $XPS^{(\theta)}$ and ${}^{11}BNMR^{(1,7)}$ experiments: (a) $K=2\cdot0$; (b) $K=4\cdot0$; (c) $K=6\cdot0$

of Na₂O distributed within the silicate and borate networks, $R_{\rm Si}$ and $R_{\rm B}$, are separately predicted. In the Zhong model,⁽²⁾ however, an arbitrary assumption is required in the prediction of the total NBO amount. Martin *et al*⁽⁴⁾ adopted the same expression of the Zhong model, but they have applied the expression only to the $R_{\rm Si}$ prediction. The Dell,⁽¹⁾ Martin⁽⁴⁾ and Miura⁽⁶⁾ models are chosen to compare the NBO fractions. The NBO fractions predicted from these models are in good agreement with the respective experimental data with the same experimental origin. Unfortunately, it is hard to judge the best model from Figure 1.

As shown in Figure 1, the difference in the experimental NBO fraction between XPS and boron NMR is small, while in the higher *R* regions, the NBO fraction from boron NMR is somewhat higher than that from XPS. According to Equation (3), the fraction of fourfold boron, N_4 is inversely estimated from the total NBO fraction. The N_4 values were calculated from the experimental NBO fraction obtained from XPS. The result is shown in Figure 2 together with the experimental N_4 data reported elsewhere.^(1,7) As compared with the NBO fraction, the difference in N_4 is quite obvious, particularly in the higher R regions. These evaluations are based on two assumptions, that the tetrahedral BO₄ units include no NBO and the NBO component separated from O1s signal contains all NBOs both in BO_3 and SiO_4 units. These assumptions imply the consistency between the results of XPS and boron NMR. The inconsistency shown in Figure 2 suggests that one or both the assumptions are inapplicable in the present case. The basicity of a BO₄ unit with one NBO is 0.71, which is much higher than the average basicity of the glass matrix, 0.44-0.65.⁽⁶⁾ Therefore, it is reasonable to assume that the BO₄ units in the present glasses include no NBOs, and NBOs in borate network are preferentially bound to threefold borons.

It should also be noted in Figure 1 that the NBO fractions obtained from XPS are much closer to those from silicon NMR rather than boron NMR, excepting the glasses in which silicon NMR shows the highest NBO fraction. It leads to another interpretation in the NBO component separated from O1s XPS signal; NBOs only in the SiO₄ units contribute to the NBO component and NBOs in BO₃ units are put into the BO component. Hsieh *et al*⁽⁹⁾ separated the O1s XPS signal for sodium borosilicate glasses into three com-

ponents, bridging oxygen, B-O-Na and Si-O-Na, concluding that the area fraction of these components follows the Dell model. As shown in Figure 1, however, the NBO fraction obtained from $XPS^{(6)}$ shows the fraction of NBO in SiO₄ units much higher than predicted from the Dell model. Chemical species in the borosilicate glasses are quite complicated; as for BO, B3-O-B3 ($\lambda = 0.42$), B3-O-Si (0.45), Si-O-Si (0.48), B3-O-B4 (0.49), B4-O-Si (0.52) and B4-O-B4 (0.57) are present, and as for NBO, B3-O-Na (0.79) and Si-O–Na (0.81) are present, where λ indicates the theoretical microscopic optical basicity of individual oxide ions.⁽¹⁰⁾ The difference in basicity of NBOs is too small to separate O1s XPS signal into B3-O-Na and Si-O-Na components. Furthermore, it is expected in the present glasses that electrons on oxide ions easily delocalise through vacant B2p_z orbital in planer BO₃ triangles. The electron delocalisation as well as the structural diversity probably brings about great difficulty in O1s peak separation.

Alkali distribution in sodium borosilicate glass

As already mentioned, full information for the alkali distribution is expected from B and Si NMR experiments; the amount of alkali oxide consumed in producing the BO₄ unit, R_{B4} is identical with the fraction of fourfold coordinated boron, N_4 , the amount of R_2O distributed to silicate network, $R_{\rm Si}$ is given by $\frac{1}{2} \times ($ the amount of NBO in SiO₄ units), and the residual R_2O_1 , $R-R_{B4}-R_{Si}=R_{B3}$ is consumed to form NBO in BO₃ units, where the assumption that BO₄ units include no NBO is still valid. The amounts of R_{B3} , R_{B4} and R_{Si} for the glasses, RNa₂O.B₂O₃.KSiO₂ (K=2·0, 4·0 and 6·0) are estimated from the experiments of ¹¹B NMR^(1,7) and ²⁹Si MAS-NMR⁽⁸⁾ and the relative amounts to the total Na₂O content, *R* are plotted in Figure 3, where some Si NMR data giving higher NBO fraction than B NMR are excluded. The relative amount of Na₂O consumed to form BO₄ units, $R_{\rm B4}/R$ decreases continuously with increasing *R*. The relative amount of Na_2O distributed within the silicate network, $R_{\rm Si}/R$ is almost constant in higher R regions. The relative amount of Na_2O consumed to form NBO in BO₃ units, R_{B3}/R has a critical threshold, and $R_{\rm B3}/R$ increases monotonically above the threshold. Consequently, each K family glasses are divided into three R regions, being defined by two critical *R* values, R_{C1} and R_{C2} . At $R < R_{C1}$, R_{B4}/R

Figure 3(a-c). Relative amount of Na_2O distributed to BO_3 , BO_4 and SiO_4 units in $RNa_2O.B_2O_3.KSiO_2$ glasses: (a) K=2.0, (b) K=4.0; (c) K=6.0

decreases and $R_{\rm Si}/R$ increases with increasing R, and no Na₂O is consumed to produce NBO in BO₃ units $(R_{\rm B3}/R=0)$ until R reaches $R_{\rm C1}$. At $R_{\rm C1} < R < R_{\rm C2}$, $R_{\rm Si}/R$ is constant so that the relative amount of Na₂O distributed to borate network, $R_{\rm B}(=R_{\rm B3}+R_{\rm B4})/R$ is also constant. In that region, $R_{\rm B4}/R$ still decreases and $R_{\rm B3}/R$ increases with increasing R. At $R_{\rm C2} < R$, little structural information is available. It is expected in the glasses that there are no BO₄ units ($R_{\rm B4}/R=0$) and $R_{\rm B3}/R$ still increases from the previous region and $R_{\rm Si}/R$ turns into decreasing.

As mentioned, some Si NMR data are omitted from Figure 3 because $R_{Si}+R_{B4}$ exceeds the total Na₂O amount R. The strange results are seen at small R regions, which is probably due to the overestimation of NBO amount in the Si NMR analysis, i.e. part of BO in B-O-Si bonds might be assigned to NBO in Si NMR. As shown in the previous section, BO in the B4–O–Si bond ($\lambda = 0.52$) surely possesses higher basicity than BO in Si–O–Si (0.48), but the difference in basicity is much smaller than that from NBO in Si-O-Na (0.81). Therefore, it is hard to explain the overestimation on the basis of the simple basicity concept. Nevertheless, it is supposed that in electronic population there is no great difference between BO in B4-O-Si and NBO in Si-O-Na. According to Miura et al,⁽⁶⁾ NBOs in SiO₄ units donate lone pair electrons to the vacant B2p_z orbital in the neighbouring BO₃ units, and they turn into BOs forming B4-O-Si bonds in the end. The electronic delocalisation through B4-O bonds is much less than that through B3–O bonds due to the lower π -bonding character of B4–O, and it is therefore expected that BOs in the B4-O-Si bonds formed in this way possess electrons similar to the NBOs in Si-O-Na units and they have been assigned to NBO in Si NMR. Probably, it is also the case in XPS. As shown in Figure 2, the discrepancy in the B4 fraction, N_4 , between B NMR and XPS is not negligible particularly in higher K-family glasses; at small R regions, XPS gives smaller N_4 values than B NMR, suggesting that XPS also overestimates the NBO amount in these regions. At high *R* regions, however, XPS seems to underestimate the NBO amount. In these glasses, BO₃ units are abundant and it is therefore supposed that in XPS the amount of NBO in BO₃ units is underestimated due to the electronic delocalisation through B3-O bonds and the resultant decrease in electronic population of the NBO in the BO₃ units.

For interpreting the experimental inconsistencies correctly, theoretical approaches, such as computational modelling and molecular orbital calculation, might be indispensable. Furthermore, the whole set of measurements, including boron and silicon NMR and XPS, should be performed on the same specimens. After collecting the full information, it should be possible to propose a new universal model for the alkali distribution in borosilicate glasses.

Conclusions

Alkali distribution models were reexamined for the sodium borosilicate glasses ($RNa_2O.B_2O_3.KSiO_2$) by comparing the NBO fraction between experiments and the predictions. The NBO fractions were evaluated from O1s XPS signal and the fraction of fourfold boron, N_4 determined from ¹¹B NMR, and the amount of NBO in SiO₄ units was also estimated from the Q_n distribution determined from ²⁹Si MAS-NMR. The difference in the NBO fractions derived from the experiments was too small to choose the best model for alkali distribution.

The amounts of Na₂O consumed for the formation of BO₄ units and NBOs in SiO₄ units, R_{B4} and R_{Si} were evaluated from ¹¹B NMR and ²⁹Si MAS-NMR, respectively. The relative distribution R_{B4}/R showed a monotonic decrease with increasing R. The alkali distribution to the silicate network R_{Si}/R , however, showed a complicated change against R; in the small R region, the alkali distribution R_{Si}/R increased continuously until R reached the critical content R_{C1} , and at $R_{C1} < R < R_{C2}$, R_{Si}/R was almost constant. In the higher R region at $R_{C2} < R$, R_{Si}/R turned into decreasing. The residual Na₂O R_{B3} served the NBO formation in BO₃ units only in the region at $R_{C1} < R$.

The discrepancy was found in N_4 obtained from ¹¹B NMR and XPS; in XPS, the NBO amount seemed to be overestimated at small R region and underestimated at high R region. The overestimation of NBO amount in the small R region was also recognised in ²⁹Si MAS-NMR. It was supposed that part of the BOs in the B4–O–Si bonds had been originally NBOs in SiO₄ units and they possessed much higher electronic density than the other BOs. It was also supposed that NBOs in BO₃ units carried lower electronic densities than NBOs in SiO₄ units, resulting in the underestimation of the NBO amount in the high R region. A universal alkali distribution model would be constructed by the correct interpretation of these experimental findings.

Physics and Chemistry of Glasses Vol. 44 No. 3 June 2003

PROC. FOURTH INT. CONF. ON BORATE GLASSES, CRYSTALS AND MELTS

References

- Dell, W. J., Bray, P. J. & Xiao, S. Z. ¹¹B NMR studies and structural modeling of Na₂O-B₂O₃-SiO₂ glasses of high soda content. *J. Non-Crurt. Solid*, 1082–59. Cryst. Solids, 1983, 58, 1-16.
- 2. Zhong, J., Wu, X., Liu, M. L. & Bray, P. J. Structural modeling of lithium borosilicate glasses via NMR studies. J. Non-Cryst. Solids, 1988, 107, 81-7.
- MacKenzie, J. W., Bhatnagar, A., Bain, D., Bhowmik, S., Parameswar, C., Budhwani, K., Feller, S. A., Royle, M. L. & Martin, S. W. ²⁸Si MAS-NMR study of the short range order in alkali borosilicate glasses. *J. Non-Cryst. Solids*, 1994, **177**, 269–76.
 Martin, S. W., MacKenzie, J. W., Bhatnagar, A., Bhowmik, S., Feller, S. A. & Royle, M. L. ²⁹Si MAS-NMR study of the short range order in acdium hearselinet advace. *Dhun Charge* **100**, **26**, 82, 8
- sodium borosilicate glasses. Phys. Chem. Glasses, 1995, 36, 82-8.
- Martin, S. W., Bhatnagar, A., Parameswar, C., Feller, S. A. & MacKenzie, J. ²⁹Si MAS-NMR study of the short-range order in potassium boro-

- silicate glasses. J. Am. Ceram. Soc., 1995, **78**, 952–60. 6. Miura, Y., Kusano, H., Nanba, T. & Matsumoto, S. X-ray photoelectron spectroscopy of sodium borosilicate glasses. J. Non-Cryst. Sol-ids, 2001, 290, 1-14.
- 7. Yun, Y. H. & Bray, P. J. Nuclear magnetic resonance studies of the glasses in the system Na₂O-B₂O₃-SiO₂. J. Non-Cryst. Solids, 1978, 27, 363-80.
- 8. Bhasin, G., Bhatnagar, A., Bhowmik, S., Stehle, C., Affatigato, M., Feller, S. A., MacKenzie, J. & Martin, S. W. Short range order in sodium borosilicate glasses obtained via deconvolution of ²⁹Si MAS NMR spectra. *Phys. Chem. Glasses*, 1998, **39**, 269-74.
- Hsieh, C. H., Jain, H., Miller, A. C. & Kamitsos, E. I. X-ray photoelec-tron spectroscopy of Al- and B-substituted sodium trisilicate glasses. J. Non-Cryst. Solids, 1994, 168, 247-57.
- 10. Duffy, J. A. & Ingram, M. D. An interpretation of glass chemistry in terms of the optical basicity concept. J. Non-Cryst. Solids, 1976, 21, 373-410.