COMPOSITIONAL DEPENDENCE OF REFRACTIVE INDEX IN TELLURITE GLASSES

S. Akamine, T. Nanba and Y. Miura
Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University
3-1-1, Tsushima-Naka
Okayama-shi 700-8530, Japan

S. Sakida
Environmental Management and Safety Section, Health and Environment Center, Okayama University
3-1-1, Tsushima-Naka
Okayama-shi 700-8530, Japan

ABSTRACT
The influence of molar volume, polarizability of oxide ion, and O1s binding energy on the refractive index was investigated for the various binary tellurite glasses. In the combination with P$_2$O$_5$, B$_2$O$_3$, and Al$_2$O$_3$, the refractive index was linearly correlated to molar volume, polarizability, and O1s binding energy. In alkali tellurite systems, the refractive index was weakly related to molar volume and polarizability. A linear correlation was found between the refractive index and O1s binding energy, but the correlation was opposite to the case for P$_2$O$_5$, B$_2$O$_3$, and Al$_2$O$_3$. It was commonly confirmed in the tellurite glasses that the refractive index was dominantly dependent on the optical band gap. Ab-initio molecular orbital calculations revealed that the LUMO levels were characterized by the structural units in tellurite glasses. In TeO$_4$ tbp unit, the LUMO levels were formed by the anti-bonding overlaps of Te5p and O2p orbitals in the axial Te-O bonds, resulting in the narrow HOMO-LUMO gap. In TeO$_3$+1 unit, larger contribution of Te5p orbital was confirmed in the LUMO levels, resulting in the wider gap. It was finally concluded that the structural change from TeO$_4$ tbp to TeO$_3$ tp via TeO$_3$+1 units widened the energy gap, resulting in the decrease in the refractive index.

INTRODUCTION
Refractive index is one of the most important properties in optical glasses. Therefore, a large number of researches have been done as for the relation between refractive index and glass composition. Among the theoretical expressions, the Lorentz-Lorenz equation1,2 relates the polarizability3 to the refractive index4 as follows.

$$\frac{n^2 - 1}{n^2 + 2} V_m = \frac{4}{3} \pi N \alpha_m = \frac{4}{3} \pi N \sum_i x_i \alpha_i$$

(1)

where V_m is the molar volume, N is Avogadro’s number, α_m is the molar polarizability, x_i is the ionic ratio, α_i is the polarizability of the constituent i in a material. In Eq. 1, $(n^2-1)/(n^2+2)$ is almost proportional to n at $n < 2.2$, and hence larger n is achieved in the materials with smaller V_m and larger α_i. In the conventional oxide glasses, such as silicate and borate glasses, oxide ion possesses much larger polarizability than the other glass constituents.3 In such glasses, therefore, refractive index is largely dependent on the polarizability of oxide ion, $\alpha_O^{2-} = 1.3 - 1.8 \text{ Å}^3$.4
However, the polarizability of tellurium ion (α_{Te^{4+}} = 1.595 \text{ Å}^3) is larger than the other cations, and is almost comparable to α_{O^{2-}}^{2-}. Therefore, the contribution of Te ions is not negligible in investigating the compositional dependence of refractive index in tellurite glasses.

On the other hand, basicity of oxide glass is also associated with the polarizability of oxide ion. In general, basicity of oxide glass is interpreted as the ability in electron donation of oxide ions. Electrons excessively localized on oxide ions are donated to the neighbors. Oxide ions with excess electrons are easily polarized, and hence they should have higher polarizability. Moreover, it has been proposed that oxygen 1s binding energy determined by X-ray photoelectron spectroscopy (XPS) is a measure of the basicity of oxide glass. It is therefore interesting to examine the correlation among O1s binding energy, polarizability, and refractive index of tellurite glasses.

In the tellurite glasses the network consists of TeO₄ trigonal bipyramid (tbp), TeO₃₊₁ polyhedra, and TeO₃ trigonal pyramids (tp), and the structural change of TeO₄→TeO₃₊₁→TeO₃ takes place along with the addition of modifier oxides. According to the conventional notation, TeO₄ tbp unit is formed by Te sp² hybrid orbitals in the equatorial positions and Te pd hybrid in the axial sites. Lone pair electrons occupy an equatorial site, and the unit is hence asymmetric, resulting in the different Te-O bonding distances between the axial and equatorial directions. TeO₃ tp unit is formed by Te sp³ hybrid orbitals, and one of them is occupied by a lone pair of electrons. TeO₃₊₁ unit is the structural intermediate. These structural units coexist in tellurite glasses, bringing about anomalous behaviors in various properties.

In this study, refractive index was measured for some binary tellurite glasses, and the compositional dependence of refractive index was discussed based on the electronic states determined from XPS measurements. Ab-initio molecular orbital calculations were also performed using the Gaussian03 program to obtain theoretical interpretations for the compositional dependence.

EXPERIMENTAL PROCEDURES
Sample preparation and Measurements

The compositions of the glasses investigated were xP₂O₅·(100-x)TeO₂ (x=10-30 mol%), xB₂O₃·(100-x)TeO₂ (x=15-20 mol%), xAl₂O₃·(100-x)TeO₂ (x=5-15 mol%), xLi₂O·(100-x)TeO₂ (x=15-28 mol%), xNa₂O·(100-x)TeO₂ (x=10-25 mol%), xK₂O·(100-x)TeO₂ (x=7.5-22.5 mol%), xRb₂O·(100-x)TeO₂ (x=10-20 mol%), xCs₂O·(100-x)TeO₂ (x=7.5-12.5 mol%). 10 g batch of well mixed oxides was melted in an Au or Pt crucible at 750 - 800 °C. After annealing at T_g-20 °C (T_g: glass transition temperature) for an hour, both glass surfaces were optically polished with kerosene.

The refractive index at the wavelength of 632.8 nm was measured by a prism coupler method (Metricon, Model 2010). O1s binding energy was measured by X-ray photoelectron spectrometry (Fisons Instruments, S-Probe ESCA SSX-100S). Density was measured by the Archimedes method using kerosene as an immersion liquid. Optical absorption spectrum was measured in the wavelength range from 190 to 2500 nm (JASCO, V-570).

Computational methods

Two cluster models of Te₅O₁₆H₁₂ and Li₄Te₃O₉H₂ containing TeO₄ tbp and TeO₃₊₁ units, respectively, were constructed from the structures of α-TeO₂ and α-Li₂Te₂O₅ crystals, where the dangling bonds were terminated by hydrogen atoms. Geometrical optimization and molecular orbital calculations were performed in the ab initio restricted B3LYP combination of functionals,
using the Gaussian 03 program. Density functional theory was used to calculate the atomic and electronic structures. O, Li and H atoms were described with the 6-31G* basis set, while Te was described with the CRENBL ECP and basis set.

RESULTS AND DISCUSSION

Polarizability of oxide ion

As mentioned, it is expected from the Lorentz-Lorenz equation (Eq. 1) that the refractive index n is inversely related to the molar volume V_m^{-1} and is proportionally related to the polarizability α. Then, the relation between n and V_m^{-1} was examined. As shown in Fig. 1, when the network forming and intermediate oxides, such as P_2O_5, B_2O_3 and Al_2O_3, are added to TeO_2, both n and V_m^{-1} decrease, that is, n is proportional to V_m^{-1}. In case of the addition of the network modifying alkali oxides, the proportional relations were also observed, except for Li_2O addition.

Fig. 1. Relation between refractive index n and reciprocal of molar volume V_m^{-1}. The refractive index of pure TeO_2 was referred from S. Kim.

Fig. 2 shows the relation with the polarizability of oxide ion $\alpha_{O^{2-}}$. In the network forming and intermediate oxides, n is in proportion to $\alpha_{O^{2-}}$. Li_2O also shows a proportional relationship. At this time, the other alkali oxides are in exceptional manner.
Fig. 2. Relation between refractive index n and polarizability of oxide ion α_{O^2-}. The refractive index of pure TeO$_2$ was referred from S. Kim.13

It is consequently concluded that the refractive index n is proportional to α_{O^2-} and V_m^{-1} in the combination with the network forming and intermediate oxides. In the case of the network modifying oxides, however, no predominant factor is seen in the compositional dependence of n.

O1s binding energy

Fig. 3 shows the relation between O1s binding energy and refractive index. O1s binding energy is a measure of basicity of oxide ion; with increasing the electron density in the valence region, that is, with increasing the basicity, the binding energies of core orbitals such as O1s shift to lower energy side. When the network forming and intermediate oxides are added to TeO$_2$, O1s binding energy increases, and in the case of alkali addition, the binding energy decreases. It is expected that the electron density in the valence region is related to the polarizability.
Comparing Fig. 3 with Fig. 2, when O1s binding energy decreases, the polarizability of oxide ion increases, being confirmed the rough correlation between O1s binding energy and polarizability. Between the binding energy and refractive index, however, no linear correlation was observed. As for K, Rb, and Cs tellurite glasses, the polarizability of oxide ion increases but the refractive index decreases along with the alkali addition. It is quite anomalous phenomenon.

Optical band gap E_g

Dimitrov et al.14 showed the relationship between the refractive index n and the energy band gap E_g.

$$\frac{n^2 - 1}{n^2 + 2} = 1 - \sqrt{\frac{E_g}{20}}$$ \hspace{1cm} (2)

Then, the relation between the refractive index n and the optical band gap E_g was examined. As shown in Fig. 4, a rough correlation is observed between n and E_g, that is, the refractive index decreases with increasing the optical band gap. In the conventional binary glasses, such as alkali silicate and alkali borate systems, the optical band gap decreases along with the alkali addition. In the alkali tellurite glasses, however, the gap increases oppositely due to the alkali addition. It is noted that the chemical shifts of O1s binding energy due to the alkali addition are the same between tellurite and the other conventional oxide glasses. It is therefore expected that the tellurite glasses have a quite different electronic structure from the conventional glasses.
Electronic structure of tellurite system

The calculated core electron O1s binding energies and band gaps corresponded to the experiment values well.

Table 1 shows the energies of HOMO, LUMO, and the energy gap between LUMO and HOMO calculated from Te5O16H12 and Li4Te3O9H2 clusters, where only the results for TeO4 and TeO3+1 units present in the clusters are evaluated. Between the clusters, the difference in HOMO is quite small (0.03 eV), but the difference in LUMO is obvious (0.46 eV); the energy gap increases due to the larger energy shift in the LUMO levels, which is consistent with the experimental results.

According to the molecular orbital calculations, in TeO4 tbp unit in Te5O16H12 cluster, the HOMO levels consist of the lone pair electrons in O2p and Te5s orbitals, and the LUMO levels are mainly composed of O2p and Te5p orbitals, and a small amount of Te5s orbitals are also seen. In TeO3+1 unit in Li4Te3O9H2 cluster, the HOMO levels also consist of the lone pair electrons in O2p and Te5s as well as TeO4 unit, but the contribution of atomic orbitals in the LUMO levels are different; Te5p becomes larger, and Te5s becomes smaller. According to the conventional notation, the hybrid orbitals of Te changes from sp^2+pd in TeO4 tbp unit to sp^3 in TeO3 tp unit due to the decrease in the coordination number of Te. The LUMO levels in TeO4 unit are assigned to anti-bonding orbitals of Te5p + O2p overlap in the weak Te-O bonds. Along with the structural change, TeO4→TeO3+1→TeO3, the contribution of the weak pd hybrid orbitals, of which energy gap between bonding and anti-bonding orbitals is narrow, disappears gradually from the LUMO levels, resulting in wider gap and smaller refractive index.
Table 1. Calculated energies of HOMO, LUMO, and the energy gap (LUMO-HOMO).

<table>
<thead>
<tr>
<th>Cluster / tellurite unit</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>Gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te5O${16}$H$_{12}$ / TeO$_4$</td>
<td>-6.82</td>
<td>-1.90</td>
<td>4.92</td>
</tr>
<tr>
<td>Li$_4$Te$_3$O$_9$H$_2$ / TeO$_3^{+1}$</td>
<td>-6.79</td>
<td>-1.44</td>
<td>5.35</td>
</tr>
</tbody>
</table>

CONCLUSION

The compositional dependence on refractive index was discussed in the binary tellurite glasses. In the case of combination with the network forming oxides (P$_2$O$_5$, B$_2$O$_3$) and the intermediate oxide (Al$_2$O$_3$), the refractive index n was almost proportional to the polarizability of oxide ion α_O^{2-} and the reciprocal of molar volume V_m^{-1}. In the case of the network modifying alkali oxides (Li$_2$O, Na$_2$O, K$_2$O, Rb$_2$O, Cs$_2$O), the refractive index were weakly dependent on α_O^{2-} and V_m^{-1}. A correlation was confirmed between α_O^{2-} and V_m^{-1}. $E_B(O1s)$ was not the dominant factor on n. It was finally confirmed that n was mainly dependent on the optical band gap E_g. With increasing alkali content, E_g increased in tellurite glasses, even though E_g decreased in the conventional glasses such as silicate and borate. The compositional dependence on E_g was successfully reproduced by the theoretical molecular orbital calculations for the clusters containing TeO$_4$ tbp and TeO$_3^{+1}$ units. The structural difference was clearly reflected on the LUMO levels. In TeO$_4$ tbp unit, the LUMO levels were formed by the anti-bonding overlaps of Te5p and O2p orbitals in the axial Te-O bonds, resulting in the narrow HOMO-LUMO gap. Along with the structural change from TeO$_4$ tbp to TeO$_3$ tp via TeO$_3^{+1}$ units, the contribution of more stable sp3 hybrid orbitals increased to widen the energy gap, resulting in the decrease in the refractive index.

REFERENCES

12 (http://www.cse.clrc.ac.uk/qcg/basis/) EMSL Gaussian Basis Set Order Form.
