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Multiple regression analyses were applied to the prediction of glass structures, such as O 1s binding energy and fraction of four-
fold coordinated boron atoms, N4. In the case of linear combination of the content of glass constituents, an acceptable prediction
accuracy was obtained for O 1s binding energy, and as for N4, however, a poor agreement was observed between the prediction
and measurement. After introducing quadratic and cubic interaction terms into the regression formula, a drastic improvement
was achieved in the prediction of N4. Some regression coefficients were dependent on basicity of each glass constituent, suggesting
the feasibility of prediction for the glasses containing novel constituents whose regression parameters have never been
determined.
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1. Introduction

Commercial glasses have complicated compositions, and
the development of new glasses has been empirically done by
repetitions of trial and error. For the design of glass composi-
tion, the use of database must be effective. As for glass, two
commercial databases, SciGlass1) and INTERGLAD2) are avail-
able. In glass, composition is continuously variable, and hence
properties also change continuously along with the composition.
Additivity rule3) has been used to predict the properties and
structures of glass, which is based on the assumption that a
property of a glass is expressed by a linear approximation
connecting both ends of the glass composition. In some glass
systems, such as borate glass, non-linear changes in properties
against glass composition are seen, and applicability of the
additivity rule is limited. Both Sciglass and INTERGLAD pro-
vide predictions of properties, and in INTERGLAD, a multiple
regression analysis incorporating a cross-product regression is
available, which enables higher accuracy in the prediction of
properties with complicated change.
Originally, properties of a material are dependent on its

structure, and the property prediction with high accuracy is
therefore expected if not only the relationships between compo-
sition and property but also trilateral relationships among
composition, structure and property are clarified. In the latest
version of INTERGLAD released in 2009, a structure database
was added,4) in which structural information collected by various
analytical methods, such as infrared, Raman, NMR, etc. was
included. In the current edition, however, prediction of glass
structure is not provided. Then, in the present study, the multiple
regression analysis provided for the prediction of glass properties
has been applied to obtain correlating equations between glass
composition and structures.
In this paper, O 1s binding energy measured with X-ray

photoelectron spectroscopy (XPS) and fraction of four-fold
coordinated boron atoms (N4) determined from 11B MAS-NMR

spectrometry were chosen for the regression analyses. O 1s
binding energy changes according to the local structure around
oxygen, that is, kind and distance of the neighboring atoms,
and information for coordination state and nature of chemical
bonds is also obtained. The authors’ research group has proposed
a prediction expression of O 1s binding energy in alkali binary
oxide glasses,5) and in the glasses with more than three con-
stituents, however, prediction expression has never been pro-
posed. As for N4, Dell et al. have proposed a prediction for-
mula,6) and the applicability is however limited in borosilicate
glasses. When the prediction of structure in multi-component
glasses is enabled, it is expected to contribute the development in
compositional design of commercial glasses. Statistical analysis
such as multiple regression analysis is suitable for the commer-
cial glasses consisting of a number of components. In the present
study, INTERGLAD was chosen as a database, and multiple
regression analyses were performed for the predictions of O 1s
binding energy and N4.

2. Experimental

The structural data that have been collected in the authors’
group were registered in INTERGLAD.7) As for XPS, the regis-
tered data are as follows: date of measurement, name of operator,
measurement conditions, glass composition, preparative condi-
tions, XPS spectrum of whole energy region (wide scan data),
XPS core spectra of glass constituents such as O 1s, Si 2p, Na 1s,
C 1s, etc., results of peak separation such as peak position, width,
relative intensity of peak components, and XPS valence band
spectrum. As for 11B MAS-NMR, NMR spectrum and results of
peak separation were registered as well as NMR measurement
conditions and glass preparing conditions. Details of the XPS
and NMR measurements are given in the literatures.8),9)

Multiple regression analyses provided in the current edition of
INTERGLAD are available only for the data stored in property
database. Then, the registered data in structure database were
re-registered in property database, and the regression analyses
were performed. Regression expression which can be used in
INTERGLAD is given in Eq. (1).³ Corresponding author: T. Nanba; E-mail: tokuro_n@cc.okayama-

u.ac.jp
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where y is the dependent variable, that is, the predicted values of
O1s binding energy or N4, xi is the i-th independent variable, that
is, content of i-th component, and ai is the regression coefficient
for xi. The second and third terms are introduced to reproduce the
interactions between the independent variables, and the quadratic
xixj and cubic xixjxk interactions are treated as independent
variables. The last term represents the contribution of minor com-
ponents. In the multiple regression analysis, the regression
coefficients of ai, aij, aijk and aother are optimized. In the present
study, the structural data of the glasses given in Table 1 were
used in the regression analyses, in which no glass component was
regarded as negligible minor component, and hence xother = 0
and aother was not evaluated in the regression analyses.
Explanatory variables which have less contribution to the

dependent variable should be removed in regression analyses,
and the choice of the explanatory variables is done according
to t-values. The t-value is given by dividing the regression
coefficient by standard error, which is determined for each
explanatory variable. In general, an explanatory variable with
«t« < 2.0 is removed, and hence the same condition is applied
in the present study.

3. Results

Tables 2 and 3 show the optimal regression coefficients, ai, aij
and aijk in Eq. (1) obtained from the multiple regression analyses
for O 1s binding energy of 487 compositional glasses and the
fraction of four-fold coordinated boron atoms, N4 obtained from
NMR measurements of 317 glasses, respectively. Comparing
the regression coefficients between the regression models, larger
change is seen in ai for N4, suggesting the larger interaction
between the glass constituents for the formation of four-fold
boron atoms.
Figure 1 shows the results of multiple regression analyses of

O 1s binding energy, where Fig. 1(a) was obtained by assuming
the linear relationship expressed by the first and fourth terms in
Eq. (1), and Figs. 1(b) and 1(c) were derived by adding the
quadratic and cubic interactions of the explanatory variables,
that is, the second and third terms in Eq. (1), respectively. In
the horizontal axis, the experimentally measured values of O 1s
binding energy are plotted. In silicate and phosphate glasses, O 1s
spectrum can be separated into the components of bridging
oxygen and non-bridging oxygen. In this study, the center of
gravity of O 1s spectrum was chosen as experimental value of O
1s binding energy. In the vertical axis, the predictive values
calculated from Eq. (1) are illustrated. The straight lines indicated
in Fig. 1 are drawn connecting the points of equal values between
experiment and prediction. The points plotted are localized close
to the lines. The coefficient of determination, R2 increases along
with the addition of quadratic and cubic interactions, and the
difference in the coefficients is, however, not so large.
Figure 2 illustrates the results of multiple regression analyses

of the fraction of four-fold coordinated boron atoms, N4 obtained
from NMR measurements. In the linear regression model
neglecting the interactions between the explanatory variables,
the dispersion of the plotted points is quite large, and the
predictive N4 value reaches a plateau at around 50% as seen
in Fig. 2(a). In the quadratic regression model, R2 increases
drastically from the case of linear regression model. As shown

in Table 3, the drastic change is also confirmed in ai, where some
ai become negative, suggesting the larger contribution of quad-
ratic and cubic interactions between the glass constituents.

4. Discussion

As is obvious from Eq. (1), the regression coefficient ai in the
linear independent term of a glass constituent should be ideally
equal to the measured value of the pure glass of respective com-
ponent such as SiO2 and B2O3. Definitely, the values of ai
optimized for O 1s binding energy listed in Table 2 are close to
the measured values. For example, the experimental O 1s binding
energies of pure B2O3 and SiO2 glasses are 533.310) and 532.68)

eV, respectively. In the case of N4, however, the meaning of ai is
slightly different. Pure SiO2 glass contains no B atoms, and hence
N4 is not measurable. If we have to define, ai for N4 means the N4

value of a pure glass containing trace amount of boron. As shown
in Table 3, however, some of ai optimized for N4 are negative,
which does not meet this definition. In the case of B2O3, aB2O3

for
N4 must be ideally equal to the experimental N4, that is, 0.
As shown in Table 3, however, the optimal values of aB2O3

are
24.72, ¹37.69 and ¹27.32 for the linear, quadratic and cubic
regression models, respectively, which are far from the ideal
value of 0. In the current version of INTERGLAD, it is not
allowed to use arbitrary values of regression coefficients, such
as aB2O3

= 0. In the future version, the use of fixed values of
regression coefficients is expected for the cases with trivial
regression coefficients.
Thus, the interpretation of the regression coefficients is quite

difficult. However, if we can find some trend in the regression
coefficients, it can be used as a criterion of validity. The authors’
research group has proposed that the O 1s binding energy can be
used as a measure of basicity of oxide glasses.5) It is hence
supposed that glass constituents with higher acidity have larger
ai values and those with higher basicity indicate smaller ai
values. Then, the relations between the regression coefficients
and basicity were examined, where basicity ª of an oxide was
calculated from the Pauling electronegativity » by using the
following equation.11)

� ¼ 1

1:36ð»� 0:26Þ ð2Þ

Figure 3 shows the correlations between the regression coef-
ficients for O 1s binding energy and basicity of the glass
constituents. As shown in Fig. 3(a), the regression coefficient
ai in the linear regression model decreases with increasing the
basicity ª. As also reported in the previous study,5) TeO2 and
Bi2O3-containing glasses have lower O 1s binding energy than
expected from basicity. In Fig. 3(a), the similar result is also
confirmed for PbO, TiO2 and La2O3 besides TeO2 and Bi2O3.
As for La2O3, a large increase in ai is observed after

adding quadratic and cubic interaction terms, suggesting the
large contribution of the additional terms in the prediction of
O 1s binding energy. The contribution of quadratic and cubic
interaction terms is reflected by the magnitude of regression
coefficients, aij and aijk. The coefficients aij and aijk associated
with La2O3 in the cubic regression model are ca. ¹30 and ¹45,
respectively, which are quite larger among the glass constituents.
The correlations between the regression coefficients for N4

and basicity are given in Fig. 4. The coefficient ai in the linear
regression model is almost constant at around 50, and however,
only Al2O3 indicates negative coefficient of ¹97. It is noted that
the coefficient ai in the quadratic and cubic regression models
decreases with increasing the basicity ª, and the coefficients
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Table 1. Composition of the glasses provided for the regression analyses

Glass Composition (molar ratio)

(a) O 1s binding energy determined by XPS
x1 M2O·(1 ¹ x1) P2O5 x1 = Li: 0.150.5, Na: 0.10.6, K: 0.150.5
x1 CaO·(1 ¹ x1) P2O5 x1 = 0.20.5
x1 Na2O·0.1 Al2O3·(0.9 ¹ x1) P2O5 x1 = 0.250.55
TeO2

x1 M2O·(1 ¹ x1) TeO2 x1 = Li: 0.150.3, Na: 0.10.35, K: 0.10.25,
Rb: 0.10.2, Cs: 0.050.13

x1 WO3·(1 ¹ x1) TeO2 x1 = 0.10.3
0.1 La2O3·x2 WO3·(0.9 ¹ x2) TeO2 x2 = 0.10.5
x1 K2O·x2 WO3·(1 ¹ x1 ¹ x2) TeO2 x1 = 0.050.25, x2 = 0.100.50
x1 Li2O·(0.3 ¹ x1) La2O3·0.7 TeO2 x1 = 0.180.28
B2O3

x1 M2O·(1 ¹ x1) B2O3 x1 = Li: 0.050.54, Na: 0.050.41, K: 0.050.35,
Rb: 0.060.40, Cs: 0.050.40

x1 MO·(1 ¹ x1) B2O3 x1 = Ca: 0.280.43, Sr: 0.240.44,
Ba: 0.200.43, Pb: 0.67

x1 M2O3·(1 ¹ x1) B2O3 x1 = Bi: 0.060.80, La: 0.25
x1 Na2O·x2 Al2O3·(1 ¹ x1 ¹ x2) B2O3 x1 = 0.20.5, x2 = 0.050.2
x1 CaO·x2 Al2O3·(1 ¹ x1 ¹ x2) B2O3 x1 = 0.150.5, x2 = 0.050.3
x1 Na2O·x2 La2O3·(1 ¹ x1 ¹ x2) B2O3 x1 = 0.050.23, x2 = 0.050.2
x1 La2O3·x2 TeO2·(1 ¹ x1 ¹ x2) B2O3 x1 = 0.050.2, x2 = 0.50.9
x1 Bi2O3·(1 ¹ x1) TeO2·0.4 B2O3 x1 = 0.150.45
x1 Na2O·x2 TiO2·(1 ¹ x1 ¹ x2) B2O3 x1 = 0.270.33, x2 = 0.040.27
0.05 ZnO·0.65 PbO·0.3 B2O3

x1 Li2O·0.2 BaO·(0.8 ¹ x1) Bi2O3 x1 = 0.20.5
SiO2

x1 M2O·(1 ¹ x1) SiO2 x1 = Li: 0.33, Na: 0.150.50, K: 0.200.33,
Rb: 0.330.50, Cs: 0.33, 0.333

x1 PbO·(1 ¹ x1) SiO2 x1 = 0.250.70
x1 Bi2O3·(1 ¹ x1) SiO2 x1 = 0.070.85
x1 Na2O·x2 Al2O3·(1 ¹ x1 ¹ x2) SiO2 x1 = 0.060.33, x2 = 0.050.40
x1 Li2O·(0.33 ¹ x1)Cs2O·0.67 SiO2 x1 = 0.070.27
x1 M2O·x2 TiO2·(1 ¹ x1 ¹ x2) SiO2 x1 = K: 0.220.33, x2 = 0.33

x1 = Na: 0.200.44, x2 = 0.040.40
x1 Na2O·(0.5 ¹ x1) ZnO·0.5 SiO2 x1 = 0.100.40
GeO2

x1 M2O·(1 ¹ x1) GeO2 x1 = Na: 0.050.4, K: 0.10.4
x1 PbO·(1 ¹ x1) GeO2 x1 = 0.050.65
x1 MO·(1 ¹ x1) Al2O3 x1 = Ca: 0.60.7, Sr: 0.670.7
x1 B2O3·(1 ¹ x1) SiO2 x1 = 0.330.5
x1 M2O·x2 B2O3·(1 ¹ x1 ¹ x2) SiO2 x1 = Li: 0.230.5, x2 = 0.080.51

x1 = Na: 0.070.6, x2 = 0.030.64
x1 = K: 0.120.43, x2 = 0.10.59
x1 = Cs: 0.20.45, x2 = 0.170.53

(b) Fraction of four-fold coordinated boron atoms estimated from 11B MAS-NMR
x1 M2O·(1 ¹ x1) B2O3 x1 = Li: 0.090.34, Na: 0.170.38, K: 0.090.38
x1 Na2O·x2 MO·(1 ¹ x1 ¹ x2) B2O3 x1 = 0.040.28, x2 = Ca: 0.040.28

x1 = 0.050.28, x2 = Ba: 0.020.27
x1 CaO·x2 BaO·(1 ¹ x1 ¹ x2) B2O3 x1 = 0.060.31, x2 = 0.070.38
x1 M2O·x2 Al2O3·(1 ¹ x1 ¹ x2) B2O3 x1 = Li: 0.090.45, x2 = 0.050.19

x1 = Na: 0.150.41, x2 = 0.060.19
x1 = K: 0.090.41, x2 = 0.060.19

x1 M2O·x2 B2O3·(1 ¹ x1 ¹ x2) SiO2 x1 = Li: 0.090.5, x2 = 0.130.91
x1 = Na: 0.110.6, x2 = 0.130.83
x1 = K: 0.090.43, x2 = 0.140.91

x1 M2O·x2 Al2O3·x3 B2O3·(1 ¹ x1 ¹ x2 ¹ x3) SiO2 x1 = Li: 0.090.5, x2 = 0.050.19, x3 = 0.110.91
x1 = Na: 0.110.5, x2 = 0.060.19, x3 = 0.110.83
x1 = K: 0.090.43, x2 = 0.060.19, x3 = 0.130.91

x1 Na2O·x2 MO·x3 B2O3·(1 ¹ x1 ¹ x2 ¹ x3) SiO2 x1 = 0.040.38, x2 = Ca: 0.030.35, x3 = 0.130.91
x1 = 0.060.38, x2 = Sr: 0.050.38, x3 = 0.250.45
x1 = 0.050.38, x2 = Ba: 0.030.38, x3 = 0.130.91

x1 CaO·x2 BaO·x3 B2O3·(1 ¹ x1 ¹ x2 ¹ x3) SiO2 x1 = 0.060.38, x2 = 0.070.38, x3 = 0.130.77
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become negative except for SiO2 and SrO. As for the coefficient
aij, most of the glass constituents are positive and widely
distributed between 200 and 800. Negative aij values are obtained
for the interactions between the network formers, B2O3, SiO2 and
Al2O3. Dependency of aij and aijk on the basicity is not confirmed
in Figs. 4(b) and 4(c), and it is also the case for O 1s binding
energy shown in Figs. 3(b) and 3(c). It is hence suggested that
the prediction of aij and aijk based on basicity is difficult. In the
case of ai, however, dependency on basicity is recognized, and
hence it is able to predict the coefficient ai based on basicity. The
authors’ research group has reported that N4 was predictable by
using basicity instead of glass composition as an explanatory
variable.9) It is indicated from the present study that prediction of
N4 with high accuracy is also possible even in the case using
glass composition as an explanatory variable, and the multiple
regression analysis assuming the quadratic and cubic interactions
are effective for the predictions of not only properties but also
structure of glasses.

Table 3. Regression coefficients in (a) linear (ai), (b) quadratic (aij) and
(c) cubic (aijk) terms obtained from, the linear, quadratic and cubic
regression models for the fraction of four-fold coordinated boron atoms,
N4. Basicity, ª calculated from Eq. (2) is also shown in the parenthesis.

Constituents (Basicity, ª)
Regression models

Linear Quadratic Cubic

(a) ai in linear independent term
B2O3 (0.423) 24.72 ¹37.69 ¹27.32
SiO2 (0.477) 59.61 39.58 87.16
Al2O3 (0.593) ¹97.42 ¹108.97 ¹254.40
Li2O (0.994) 40.85 ¹206.75 ¹152.55
CaO (0.994) 27.12 ¹98.56 ¹48.19
SrO (0.994) 43.81 111.06 108.55
Na2O (1.149) 42.93 ¹286.88 ¹262.77
BaO (1.149) 48.61 ¹188.55 ¹167.74
K2O (1.362) 36.74 ¹333.81 ¹286.39

(b) aij in quadratic interaction term
B2O3 SiO2 ¹184.03
SiO2 Al2O3 ¹230.44
B2O3 Li2O 593.08 459.68
B2O3 CaO 418.72 310.93
SiO2 Li2O 474.16 248.44
SiO2 CaO 218.11
B2O3 Na2O 710.64 632.60
B2O3 BaO 551.81 486.45
Al2O3 Li2O 484.50
SiO2 Na2O 617.74 426.57
SiO2 BaO 436.65 262.42
Al2O3 Na2O 624.37 593.46
B2O3 K2O 776.82 659.55
SiO2 K2O 633.10 370.57
Al2O3 K2O 670.14 575.73
Na2O BaO 81.91 89.37

(c)aijk in cubic interaction term
B2O3 SiO2 Li2O 588.73
B2O3 SiO2 CaO 521.15
B2O3 Al2O3 Li2O 1815.57
B2O3 SiO2 Na2O 657.49
B2O3 SiO2 BaO 562.03
SiO2 Al2O3 Li2O 804.79
B2O3 Al2O3 Na2O 1005.27
B2O3 SiO2 K2O 856.42
B2O3 Al2O3 K2O 1061.53

(d) aother in additional term
other ® ® ®

Table 2. Regression coefficients of (a) linear (ai), (b) quadratic (aij) and
(c) cubic (aijk) terms obtained from, the linear, quadratic and cubic
regression models for O 1s binding energy. Basicity, ª calculated from
Eq. (2) is also shown in the parenthesis

Constituents (Basicity, ª)
Regression models

Linear Quadratic Cubic

(a) ai in linear independent term
P2O5 (0.400) 534.75 533.01 533.51
TeO2 (0.400) 530.20 530.36 530.32
B2O3 (0.423) 532.83 533.19 533.29
Bi2O3 (0.448) 528.10 530.06 530.21
SiO2 (0.477) 532.00 532.17 532.58
GeO2 (0.477) 531.99 531.83 532.09
PbO (0.477) 528.43 528.38 528.09
WO3 (0.511) 531.22 531.81 530.96
ZnO (0.549) 530.86 530.56 530.02
Al2O3 (0.593) 531.17 532.38 533.59
TiO2 (0.593) 528.65 530.27 527.83
La2O3 (0.875) 523.93 545.84 544.13
Li2O (0.994) 528.68 528.11 528.10
CaO (0.994) 528.62 528.07 527.74
SrO (0.994) 529.05 528.27 527.90
Na2O (1.149) 528.28 528.29 530.79
BaO (1.149) 529.05 528.18 527.99
K2O (1.362) 527.00 525.67 527.92
Rb2O (1.362) 527.02 526.42 526.06
Cs2O (1.671) 525.92 525.53 525.87

(b) aij in quadratic interaction term
TeO2 Bi2O3 ¹8.54
B2O3 Bi2O3 ¹5.61 ¹6.55
Bi2O3 SiO2 ¹6.33 ¹7.56
P2O5 Al2O3 ¹13.74
B2O3 Al2O3 ¹3.43 ¹5.41
SiO2 Al2O3 ¹11.71
TeO2 La2O3 ¹29.10 ¹26.57
B2O3 La2O3 ¹28.59 ¹26.60
WO3 La2O3 ¹33.22
P2O5 Li2O 6.88 5.39
P2O5 CaO 7.34 6.45
P2O5 Na2O 6.53
TeO2 Na2O ¹4.23
B2O3 Na2O ¹2.18 ¹6.41
Bi2O3 BaO ¹14.06 ¹14.57
SiO2 Na2O ¹5.31
GeO2 Na2O ¹5.24
Al2O3 Na2O ¹19.22
TiO2 Na2O ¹6.35
P2O5 K2O 8.94 3.80
B2O3 K2O ¹2.70
SiO2 K2O ¹2.60
GeO2 K2O 4.92
Li2O BaO 12.46 12.74
SiO2 Cs2O ¹3.94
Li2O Cs2O ¹18.16

(c) aijk in cubic interaction term
TeO2 WO3 La2O3 ¹45.23
B2O3 SiO2 Li2O ¹9.24
B2O3 Al2O3 Na2O 32.97
SiO2 Al2O3 Na2O 72.66
B2O3 SiO2 K2O ¹20.50

(d) aother in additional term
other ® ® ®
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5. Conclusion

In this study, multiple regression analyses of glass structure
were performed by using a commercial glass database system,
INTERGLAD, and applicability to the prediction of glass
structure was examined. O 1s binding energy measured by
XPS and fraction of four-fold coordinated boron atoms, N4

estimated from 11B MAS-NMR measurement were chosen as
glass structures. A regression formula assuming the interactions
between the glass constituents was examined. As for N4, drastic
improvement in the prediction accuracy was observed after
introducing the quadratic and cubic interaction terms into the
regression formula. High effectiveness was also confirmed in the
prediction of O 1s binding energy. The regression coefficients can

Fig. 1. Results of multiple regression analyses for O 1s binding energy (B.E.) by assuming (a) linear, (b) quadratic and
(c) cubic regression models.

Fig. 2. Results of multiple regression analyses for the fraction of four-fold coordinated boron atoms, N4 by assuming
(a) linear, (b) quadratic and (c) cubic regression models.

Fig. 3. Regression coefficients in (a) linear (ai), (b) quadratic (aij) and (c) cubic (aijk) terms obtained from the linear ( ),
quadratic ( ) and cubic ( ) regression models for O 1s binding energy as a function of basicity. The coefficients concerning
TeO2, Bi2O3, PbO, TiO2 and La2O3 are indicated by solid markers.

Ishii et al.: Prediction of glass structure by using multiple regression analysisJCS-Japan

102



be empirically determined. If they are correlated to some
numerical data, such as basicity, which are non-empirically
derived, it is expected that the structure of glasses containing
novel constituents will be predicted.
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